mastouille.fr est l'un des nombreux serveurs Mastodon indépendants que vous pouvez utiliser pour participer au fédiverse.
Mastouille est une instance Mastodon durable, ouverte, et hébergée en France.

Administré par :

Statistiques du serveur :

595
comptes actifs

#algebra

0 message0 participant0 message aujourd’hui
Stuff I foundAdmittedly though, I am a bit cross about that one<br> <br> <a href="https://pixelfed.social/discover/tags/antifascism?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#antifascism</a> <a href="https://pixelfed.social/discover/tags/antifa?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#antifa</a> <a href="https://pixelfed.social/discover/tags/antiracism?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#antiracism</a> <a href="https://pixelfed.social/discover/tags/antiislamophobia?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#antiislamophobia</a> <a href="https://pixelfed.social/discover/tags/islamophobia?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#islamophobia</a> <a href="https://pixelfed.social/discover/tags/math?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#math</a> <a href="https://pixelfed.social/discover/tags/algebra?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#algebra</a> <a href="https://pixelfed.social/discover/tags/activism?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#activism</a> <a href="https://pixelfed.social/discover/tags/anarchism?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#anarchism</a>
screwlisp<p><a href="https://gamerplus.org/tags/softwareEngineering" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>softwareEngineering</span></a> <a href="https://gamerplus.org/tags/programming" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>programming</span></a> <a href="https://gamerplus.org/tags/commonLisp" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>commonLisp</span></a> <a href="https://gamerplus.org/tags/assertions" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>assertions</span></a> <a href="https://gamerplus.org/tags/algebra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>algebra</span></a> - tight, efficient <a href="https://gamerplus.org/tags/lazyEvaluation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>lazyEvaluation</span></a> vector multiplication with <a href="https://gamerplus.org/tags/series" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>series</span></a> .<br><a href="https://screwlisp.small-web.org/programming/cl-series-vector-mult-assert-lisp-interactivity/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">screwlisp.small-web.org/progra</span><span class="invisible">mming/cl-series-vector-mult-assert-lisp-interactivity/</span></a></p><p>I use assert in lisp, which automatically generates an interactive in-context failure resolution which I utilize in the article, where the lazy cotruncation series feature was not wanted. Shows off a <a href="https://gamerplus.org/tags/lisp" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>lisp</span></a> useage: classic.</p><p><span class="h-card" translate="no"><a href="https://ieji.de/@vnikolov" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>vnikolov</span></a></span> what do you think of this example of assert viz your assertables?<br>+ <span class="h-card" translate="no"><a href="https://climatejustice.social/@kentpitman" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>kentpitman</span></a></span></p>
Paysages Mathématiques<p>"Algebra is but written geometry; geometry is but figured algebra." – Jean-Sylvain Bailly (1736-1793). [These words were also used by Sophie Germain, and are therefore often misattributed to her.]<br><a href="https://mathstodon.xyz/tags/quote" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>quote</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/algebra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>algebra</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a></p>
Project Gutenberg<p>Algebra is more than alphabet soup – it’s the language of algorithms and relationships</p><p>By Courtney Gibbons</p><p><a href="https://theconversation.com/algebra-is-more-than-alphabet-soup-its-the-language-of-algorithms-and-relationships-234541" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">theconversation.com/algebra-is</span><span class="invisible">-more-than-alphabet-soup-its-the-language-of-algorithms-and-relationships-234541</span></a></p><p><a href="https://mastodon.social/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mastodon.social/tags/number" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>number</span></a> <a href="https://mastodon.social/tags/algebra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>algebra</span></a></p>
Flipboard Science Desk<p>What do Sudoku, AI, Rubik’s cubes, clocks and molecules have in common? They can all be reimagined as algebraic equations.</p><p>From <span class="h-card" translate="no"><a href="https://newsie.social/@TheConversationUS" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>TheConversationUS</span></a></span>: "Algebra is more than alphabet soup – it’s the language of algorithms and relationships."</p><p><a href="https://flip.it/41r-jh" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">flip.it/41r-jh</span><span class="invisible"></span></a></p><p><a href="https://flipboard.social/tags/Algebra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Algebra</span></a> <a href="https://flipboard.social/tags/Math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Math</span></a> <a href="https://flipboard.social/tags/Mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathematics</span></a> <a href="https://flipboard.social/tags/Science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Science</span></a></p>
Sci-books.com<p>Clifford Algebras and Dirac Operators in Harmonic Analysis (Cambridge Studies in Advanced Mathematics Book 26) 1st Edition by J. Gilbert (PDF)<br>Author: J. Gilbert<br>File Type: PDF<br>Download at <a href="https://sci-books.com/clifford-algebras-and-dirac-operators-in-harmonic-analysis-cambridge-studies-in-advanced-mathematics-book-26-1st-edition-b01dm26vjq/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">sci-books.com/clifford-algebra</span><span class="invisible">s-and-dirac-operators-in-harmonic-analysis-cambridge-studies-in-advanced-mathematics-book-26-1st-edition-b01dm26vjq/</span></a><br><a href="https://mastodon.social/tags/Algebra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Algebra</span></a>, <a href="https://mastodon.social/tags/J" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>J</span></a>.Gilbert</p>
Holly<p><a href="https://universeodon.com/tags/stem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>stem</span></a> <a href="https://universeodon.com/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://universeodon.com/tags/physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>physics</span></a> <a href="https://universeodon.com/tags/algebra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>algebra</span></a> <a href="https://universeodon.com/tags/cool" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cool</span></a> </p><p>Mathematician finds solution to one of the oldest problems in algebra. No, it's not how to get kids interested in algebra </p><p><a href="https://www.sciencealert.com/mathematician-finds-solution-to-one-of-the-oldest-problems-in-algebra?utm_source=fark&amp;utm_medium=website&amp;utm_content=link&amp;ICID=ref_fark" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">sciencealert.com/mathematician</span><span class="invisible">-finds-solution-to-one-of-the-oldest-problems-in-algebra?utm_source=fark&amp;utm_medium=website&amp;utm_content=link&amp;ICID=ref_fark</span></a></p>
Charlotte Aten<p>A fundamental result in universal algebra is the Subdirect Representation Theorem, which tells us how to decompose an algebra \(A\) into its "basic parts". Formally, we say that \(A\) is a subdirect product of \(A_1\), \(A_2\), ..., \(A_n\) when \(A\) is a subalgebra of the product<br>\[<br> A_1\times A_2\times\cdots\times A_n<br>\]<br>and for each index \(1\le i\le n\) we have for the projection \(\pi_i\) that \(\pi_i(A)=A_i\). In other words, a subdirect product "uses each component completely", but may be smaller than the full product.</p><p>A trivial circumstance is that \(\pi_i:A\to A_i\) is an isomorphism for some \(i\). The remaining components would then be superfluous. If an algebra \(A\) has the property than any way of representing it as a subdirect product is trivial in this sense, we say that \(A\) is "subdirectly irreducible".</p><p>Subdirectly irreducible algebras generalize simple algebras. Subdirectly irreducible groups include all simple groups, as well as the cyclic \(p\)-groups \(\mathbb{Z}_{p^n}\) and the Prüfer groups \(\mathbb{Z}_{p^\infty}\).</p><p>In the case of lattices, there is no known classification of the finite subdirectly irreducible (or simple) lattices. This page (<a href="https://math.chapman.edu/~jipsen/posets/si_lattices92.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">math.chapman.edu/~jipsen/poset</span><span class="invisible">s/si_lattices92.html</span></a>) by Peter Jipsen has diagrams showing the 92 different nontrivial subdirectly irreducible lattices of order at most 8. See any patterns?</p><p>We know that every finite subdirectly irreducible lattice can be extended to a simple lattice by adding at most two new elements (Lemma 2.3 from Grätzer's "The Congruences of a Finite Lattice", <a href="https://arxiv.org/pdf/2104.06539" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/pdf/2104.06539</span><span class="invisible"></span></a>), so there must be oodles of finite simple lattices out there.</p><p><a href="https://mathstodon.xyz/tags/UniversalAlgebra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UniversalAlgebra</span></a> <a href="https://mathstodon.xyz/tags/combinatorics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>combinatorics</span></a> <a href="https://mathstodon.xyz/tags/logic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>logic</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/algebra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>algebra</span></a> <a href="https://mathstodon.xyz/tags/AbstractAlgebra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AbstractAlgebra</span></a></p>
2something<p><span>Me: If you're a student in my class you will do group presentations, meaning that you will organize into a subset of the class, stand in front of the room, and talk about math to the rest of the class.<br><br>Also me: Let's talk about group presentations, a completely abstract algebraic concept that have absolutely nothing to do with standing in front of the room talking about your work.<br><br>Also also me: Okay, time for group presentations </span><i>about</i><span> group presentations.<br><br></span><a href="https://transfem.social/tags/Algebra" rel="nofollow noopener noreferrer" target="_blank">#Algebra</a> <a href="https://transfem.social/tags/ITeachMath" rel="nofollow noopener noreferrer" target="_blank">#ITeachMath</a> <a href="https://transfem.social/tags/GroupTheory" rel="nofollow noopener noreferrer" target="_blank">#GroupTheory</a> <a href="https://transfem.social/tags/GroupPresentation" rel="nofollow noopener noreferrer" target="_blank">#GroupPresentation</a></p>
Colin the Mathmo<p>Every polynomial with real coefficients factors into linear and quadratic terms.</p><p>How much machinery is needed to show this?</p><p>If it crosses the X-axis then it has a linear term.</p><p>If it doesn't cross the X-axis then it is of even degree, and the roots come in complex conjugate pairs.</p><p>What the minimum needed to see this?</p><p><a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <br><a href="https://mathstodon.xyz/tags/algebra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>algebra</span></a> <a href="https://mathstodon.xyz/tags/ComplexNumbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ComplexNumbers</span></a> <br><a href="https://mathstodon.xyz/tags/MathsChat" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathsChat</span></a> <a href="https://mathstodon.xyz/tags/MathChat" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathChat</span></a></p>
2something<p><span>A webring has two web operations: web addition and web multiplication.<br><br></span><a href="https://transfem.social/tags/Rings" rel="nofollow noopener noreferrer" target="_blank">#Rings</a> <a href="https://transfem.social/tags/Webring" rel="nofollow noopener noreferrer" target="_blank">#Webring</a> <a href="https://transfem.social/tags/Algebra" rel="nofollow noopener noreferrer" target="_blank">#Algebra</a></p>
Joshua Grochow<p>Just found an English translation of Emmy Noether's 1921 "Idealtheorie in Ringbereichen" ("Ideal Theory in Rings"): <a href="https://arxiv.org/abs/1401.2577" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/1401.2577</span><span class="invisible"></span></a></p><p>(while editing the wikipedia page on subdirect products - my first wiki edit to add an Emmy Noether reference! Turns out there's a direct lineage from Noether to Birkhoff's introduction of subdirect products in universal algebra. Just one more way in which she really revolutionized algebra.)</p><p><a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/AlgebraicGeomtry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AlgebraicGeomtry</span></a> <a href="https://mathstodon.xyz/tags/Algebra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Algebra</span></a> <a href="https://mathstodon.xyz/tags/UniversalAlgebra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UniversalAlgebra</span></a></p>
mc ☕<p>Learn Algebra with Julia - Math for entry-level IT professionals, vol. 1, <a href="https://qoto.org/tags/mybook" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mybook</span></a> <a href="https://qoto.org/tags/newbook" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>newbook</span></a> 🆕 is available here:<br><a href="https://leanpub.com/learnalgebrawithjulia/" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">leanpub.com/learnalgebrawithju</span><span class="invisible">lia/</span></a></p><p>&gt; As W. W. Saywer writes in his Mathematicians Delight, “The main object of this book is to dispel the fear of mathematics.”</p><p>&gt; “It’s no secret that knowing advanced mathematical concepts and being comfortable with learning <a href="https://qoto.org/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> will open up more avenues for you as a software <a href="https://qoto.org/tags/developer" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>developer</span></a>. …"</p><p>&gt; The very nature of programming is mathematical.</p><p>-- from the Intro</p><p><a href="https://qoto.org/tags/algebra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>algebra</span></a> <a href="https://qoto.org/tags/julialang" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>julialang</span></a> <a href="https://qoto.org/tags/programming" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>programming</span></a></p>
Suite du fil

But! TIL there's a categorical definition that supposedly agrees w/ "surjection" on any variety of algebras:

h is "categorically surjective" (a term I just made up) if for any factorization h=fg with f monic, f must be an iso.

(h/t Knoebel's book doi.org/10.1007/978-0-8176-464)

Are there categorical definitions that agree w/ injective (resp. surjective) on all concrete categories?

The notion of epimorphism can be quite different from surjection, e.g. in Rings.

Though I recently learned epimorphisms can be characterized in terms of Isbell's zig-zags: en.wikipedia.org/wiki/Isbell%2.

Whereas monic seems to capture the notion of "injective" quite well in a categorical def. And indeed the two agree on any variety of algebras in the sense of universal algebra.

en.wikipedia.orgIsbell's zigzag theorem - Wikipedia

My fourteenth Math Research Livestream is now available on YouTube:

youtube.com/watch?v=pVoFfZAyXz

I talked about some topics related to my recent preprint (arxiv.org/abs/2409.12923) about topological lattices.

I decided to skip streaming today because I wanted to talk about polyhedral products, but I haven't found the old calculation that I wanted to talk about yet. Shocking I couldn't find something I did like six years ago in the ten minutes before I would start streaming. I'll look for it now, so hopefully I'll be ready next week.

#math#topology#algebra

#Mathober #Mathober2024

The prompt for day 4 was 'Form'. In algebra, a multilinear map is a function from several vector spaces to another vector space which is linear in each argument. Just as a linear map can be represented by a grid of numbers in a matrix, a multilinear map can be represented by a multidimensional grid of numbers: a tensor. A 'form' is the function you get by taking a multilinear map from V×...×V to the scalars and evaluating it with each of its arguments the same. In this way you get a *non*linear map from V to the scalars.

The image shows a degree 50 form on ℝ³ evaluated on the unit sphere. The form was randomly chosen with each of the 3⁵⁰ entries in its tensor having a standard normal distribution.