Jon Awbrey<p>Differential Logic and Dynamic Systems • Review and Transition 1<br>• <a href="https://oeis.org/wiki/Differential_Logic_and_Dynamic_Systems_%E2%80%A2_Part_1#Review_and_Transition" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Differential_Log</span><span class="invisible">ic_and_Dynamic_Systems_%E2%80%A2_Part_1#Review_and_Transition</span></a></p><p>This note continues a previous discussion on the problem of dealing with change and diversity in logic-based intelligent systems. It is useful to begin by summarizing essential material from previous reports.</p><p>Table 1 outlines a notation for propositional calculus based on two types of logical connectives, both of variable \(k\)-ary scope.</p><p>• A bracketed list of propositional expressions in the form \(\texttt{(} e_1 \texttt{,} e_2 \texttt{,} \ldots \texttt{,} e_{k-1} \texttt{,} e_k \texttt{)}\) indicates that exactly one of the propositions \(e_1, e_2, \ldots, e_{k-1}, e_k\) is false.</p><p>• A concatenation of propositional expressions in the form \(e_1 ~ e_2 ~ \ldots ~ e_{k-1} ~ e_k\) indicates that all of the propositions \(e_1, e_2, \ldots, e_{k-1}, e_k\) are true, in other words, that their logical conjunction is true.</p><p>All other propositional connectives can be obtained in a very efficient style of representation through combinations of these two forms. Strictly speaking, the concatenation form is dispensable in light of the bracketed form but it is convenient to maintain it as an abbreviation of more complicated bracket expressions.</p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/LogicalGraphs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LogicalGraphs</span></a> <a href="https://mathstodon.xyz/tags/DifferentialLogic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DifferentialLogic</span></a> <a href="https://mathstodon.xyz/tags/DynamicSystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DynamicSystems</span></a><br><a href="https://mathstodon.xyz/tags/BooleanFunctions" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BooleanFunctions</span></a> <a href="https://mathstodon.xyz/tags/BooleanDifferenceCalculus" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BooleanDifferenceCalculus</span></a> <a href="https://mathstodon.xyz/tags/QualitativeChange" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QualitativeChange</span></a><br><a href="https://mathstodon.xyz/tags/MinimalNegationOperators" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MinimalNegationOperators</span></a> <a href="https://mathstodon.xyz/tags/NeuralNetworkSystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NeuralNetworkSystems</span></a> <a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Semiotics</span></a></p>