mastouille.fr est l'un des nombreux serveurs Mastodon indépendants que vous pouvez utiliser pour participer au fédiverse.
Mastouille est une instance Mastodon durable, ouverte, et hébergée en France.

Administré par :

Statistiques du serveur :

615
comptes actifs

#polyhedron

0 message0 participant0 message aujourd’hui
Isaac Mottistone<p>Truncated ‘cuboctahedron’ mapped from continuous polynomial x^80+y^80+z^80+.6133^80((y+z)^80+(z+x)^80+(x+y)^80+(y-z)^80+(z-x)^80+(x-y)^80)+.5286^80((x+y+z)^80+(x+y-z)^80+(x-y+z)^80+(-x+y+z)^80)-1=0. An Archimedean solid, it has 26 regular faces (6 octagonal, 8 hexagonal and 12 square), 48 vertices and 72 equal edges. It is not a true truncation of the cuboctahedron which instead results in 12 rectangular faces rather than square. However, with a bit of (mathematical) stretching, the requisite all edges equal condition can be met. <a href="https://mastodonapp.uk/tags/Maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Maths</span></a> <a href="https://mastodonapp.uk/tags/Mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathematics</span></a> <a href="https://mastodonapp.uk/tags/Math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Math</span></a> <a href="https://mastodonapp.uk/tags/polyhedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polyhedron</span></a></p><p><a href="https://en.wikipedia.org/wiki/Truncated_cuboctahedron" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Truncate</span><span class="invisible">d_cuboctahedron</span></a></p>
n-gons<p>Perfect fit.</p><p><a href="https://mathstodon.xyz/tags/Hedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Hedron</span></a> <a href="https://mathstodon.xyz/tags/Geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Geometry</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/PolyHedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PolyHedron</span></a></p>
n-gons<p>Fun with chiral shapes - cube from snub cubes.</p><p><a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/Geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Geometry</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/Polyhedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Polyhedron</span></a> <a href="https://mathstodon.xyz/tags/Hedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Hedron</span></a></p>
Risto A. Paju<p>I've finally managed to put my entire "geodesic series" of himmelis side by side, thanks @noira_musti for the suggestion. The edge counts are 6, 12, 30, 36, 42, 48, 84, 90, 120, and 210.</p><p><a href="https://mathstodon.xyz/tags/himmeli" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>himmeli</span></a> <a href="https://mathstodon.xyz/tags/puzuri" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>puzuri</span></a> <a href="https://mathstodon.xyz/tags/strawart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>strawart</span></a> <a href="https://mathstodon.xyz/tags/geodesicseries" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geodesicseries</span></a> <a href="https://mathstodon.xyz/tags/geodesichimmeli" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geodesichimmeli</span></a> <a href="https://mathstodon.xyz/tags/geodesicpolyhedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geodesicpolyhedron</span></a> <a href="https://mathstodon.xyz/tags/polyhedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polyhedron</span></a> <a href="https://mathstodon.xyz/tags/geometricart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometricart</span></a> <a href="https://mathstodon.xyz/tags/algorithmicart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>algorithmicart</span></a> <a href="https://mathstodon.xyz/tags/algorist" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>algorist</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/laskutaide" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>laskutaide</span></a></p>
Doom Disco!<p>I'm very grateful for the various <a href="https://bsky.app/search?q=%23TTRPG" rel="nofollow noopener noreferrer" target="_blank">#TTRPG</a> <a href="https://bsky.app/search?q=%23media" rel="nofollow noopener noreferrer" target="_blank">#media</a> tips. I really appreciate <a href="https://bsky.app/search?q=%23Polyhedron" rel="nofollow noopener noreferrer" target="_blank">#Polyhedron</a> for his thoughtful perspectives. Like him, in my opinion, that players can/should (!) prepare as well. GMs are not (alone) in charge of the fun! They're also "players" but with special tasks. <a href="https://t.ly/izYbg" rel="nofollow noopener noreferrer" target="_blank">t.ly/izYbg</a><br><br><a href="https://youtu.be/RGwcwN48HvM?si=adsSIa1SbXmp9-2j" rel="nofollow noopener noreferrer" target="_blank">5 Ways Players Can Prep</a></p>
Johanna<p>A Geomag icosidodecahedron to celebrate the Winter Solstice. Also, to celebrate finding a large enough set to build this monster</p><p><a href="https://mastodon.online/tags/geomag" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geomag</span></a> <a href="https://mastodon.online/tags/polyhedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polyhedron</span></a> <a href="https://mastodon.online/tags/mathArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathArt</span></a></p>
n-gons<p><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a> - closed tiling of 122 equilateral polyhedra.</p><p>Exploring new shape in upcoming release by <span class="h-card" translate="no"><a href="https://mathstodon.xyz/@hedron" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>hedron</span></a></span></p><p><a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/MathsArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathsArt</span></a> <a href="https://mathstodon.xyz/tags/Geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Geometry</span></a> <a href="https://mathstodon.xyz/tags/Polyhedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Polyhedron</span></a> <a href="https://mathstodon.xyz/tags/3d" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3d</span></a> <a href="https://mathstodon.xyz/tags/PerfectLoop" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PerfectLoop</span></a></p>
n-gons<p>Dodecahedral bouquet of flowers for your Sunday enjoyment.</p><p>265 equilateral polyhedra tiled face to face.</p><p><a href="https://mathstodon.xyz/tags/Hedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Hedron</span></a> <a href="https://mathstodon.xyz/tags/Flower" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Flower</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/MathsArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathsArt</span></a> <a href="https://mathstodon.xyz/tags/Polyhedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Polyhedron</span></a> <a href="https://mathstodon.xyz/tags/Tiling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Tiling</span></a> <a href="https://mathstodon.xyz/tags/Loop" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Loop</span></a></p>
Laurent Malys<p>Semi regular polyhedron morphing</p><p><a href="https://framapiaf.org/tags/creativecoding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>creativecoding</span></a> <a href="https://framapiaf.org/tags/p5js" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>p5js</span></a> <a href="https://framapiaf.org/tags/polyhedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polyhedron</span></a> <a href="https://framapiaf.org/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a> <a href="https://framapiaf.org/tags/art" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>art</span></a></p>
Colin the Mathmo<p>Anyone know the name of this shape? I know I should know, but I've never had any luck trying to remember all the names of all the shapes ...</p><p><a href="https://mathstodon.xyz/tags/Maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Maths</span></a> <a href="https://mathstodon.xyz/tags/PolyHedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PolyHedron</span></a> <a href="https://mathstodon.xyz/tags/Sculpture" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Sculpture</span></a></p>
Isaac Mottistone<p><a href="https://mastodonapp.uk/tags/Maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Maths</span></a> <a href="https://mastodonapp.uk/tags/Mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathematics</span></a> Truncated icosahedron mapped from a continuous polynomial: (y/ϕ+z/ϕ^3)^60+ (y/ϕ-z/ϕ^3)^60+((x+y+z)/ϕ^2)^60+((x+y-z)/ϕ^2)^60+ ((-x+y+z)/ϕ^2)^60+((-x+y-z)/ϕ^2)^60+(x/ϕ^3+z/ϕ)^60+(-x/ϕ^3+z/ϕ)^60+(x/ϕ+y/ϕ^3)^60+(-x/ϕ+y/ϕ^3)^60+((3/(4+3ϕ))(x+ϕy))^60+((3/(4+3ϕ))(x-ϕy))^60+((3/(4+3ϕ))(y+ϕz))^60+((3/(4+3ϕ))(y-ϕz))^60+((3/(4+3ϕ))(z+ϕx))^60+((3/(4+3ϕ))(z-ϕx))^60-1=0 where ϕ is the golden ratio. The <a href="https://mastodonapp.uk/tags/polyhedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polyhedron</span></a> has 20 hexagonal and 12 pentagonal faces, 60 vertices and 90 edges.</p>
Antonin Roussel<p>🌟<br>Confectionner une boule de papier avec ouvertures en forme d'étoile à cinq branches <br>⭐ 🖨️ ✏️ 📃 📝 ✍️ ✂️ 🤌 🫴 🫳 👌 ⚽ 🤩<br>Polyèdre cousin de l'icosaèdre. Patron à imprimer. Décorations à dessiner. Dégradés de couleurs.<br><a href="https://piaille.fr/tags/patron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>patron</span></a> <a href="https://piaille.fr/tags/d%C3%A9coupage" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>découpage</span></a> <a href="https://piaille.fr/tags/pliage" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pliage</span></a> <a href="https://piaille.fr/tags/collage" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>collage</span></a> <a href="https://piaille.fr/tags/faitMaison" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>faitMaison</span></a> <a href="https://piaille.fr/tags/diy" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>diy</span></a> <a href="https://piaille.fr/tags/MastoArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MastoArt</span></a> <a href="https://piaille.fr/tags/craft" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>craft</span></a> <a href="https://piaille.fr/tags/polyhedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polyhedron</span></a> <a href="https://piaille.fr/tags/folding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>folding</span></a> <a href="https://piaille.fr/tags/3DArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3DArt</span></a> <br>Genèse et autres patrons colorées sur <a href="http://antonin.roussel.free.fr/g/?atrt" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">http://</span><span class="ellipsis">antonin.roussel.free.fr/g/?atr</span><span class="invisible">t</span></a></p>
n-gons<p>A wild new shape appeared, I call it a sqrt(2) ball, maybe it has a better name. It has square, triangular and rhombic faces. I built it with prisms and rhombohedra with sqrt(2) rhombuses, as well as square pyramids, tetrahedra, and regular triangular prisms. All with the recently updated <span class="h-card" translate="no"><a href="https://mathstodon.xyz/@hedron" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>hedron</span></a></span> app <a href="https://mathstodon.xyz/tags/Polyhedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Polyhedron</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/Geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Geometry</span></a> <a href="https://mathstodon.xyz/tags/Hedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Hedron</span></a></p>
Mark Gardner<p><a href="https://social.sdf.org/tags/Dymaxion" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Dymaxion</span></a> <a href="https://social.sdf.org/tags/Folding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Folding</span></a> <a href="https://social.sdf.org/tags/Globe" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Globe</span></a> from <a href="https://social.sdf.org/tags/Areaware" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Areaware</span></a>, before and after</p><p><a href="https://www.areaware.com/products/dymaxion-folding-globe?variant=21946826244" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">areaware.com/products/dymaxion</span><span class="invisible">-folding-globe?variant=21946826244</span></a> (also available in black and white)</p><p>The story behind the <a href="https://social.sdf.org/tags/design" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>design</span></a>: <a href="https://www.ravenhillstudio.com/story/dymaxion-globe" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">ravenhillstudio.com/story/dyma</span><span class="invisible">xion-globe</span></a></p><p><a href="https://social.sdf.org/tags/BuckminsterFuller" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BuckminsterFuller</span></a> <a href="https://social.sdf.org/tags/Bucky" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bucky</span></a> <a href="https://social.sdf.org/tags/ShojiSadao" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ShojiSadao</span></a> <a href="https://social.sdf.org/tags/BrendanRavenhill" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BrendanRavenhill</span></a> <a href="https://social.sdf.org/tags/DymaxionProjection" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DymaxionProjection</span></a> <a href="https://social.sdf.org/tags/RaleighProjection" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RaleighProjection</span></a> <a href="https://social.sdf.org/tags/map" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>map</span></a> <a href="https://social.sdf.org/tags/cartography" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cartography</span></a> <a href="https://social.sdf.org/tags/Earth" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Earth</span></a> <a href="https://social.sdf.org/tags/planet" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>planet</span></a> <a href="https://social.sdf.org/tags/foldaform" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>foldaform</span></a> <a href="https://social.sdf.org/tags/icosahedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>icosahedron</span></a> <a href="https://social.sdf.org/tags/polyhedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polyhedron</span></a> <a href="https://social.sdf.org/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a> <a href="https://social.sdf.org/tags/geodesic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geodesic</span></a></p>
Alun Kirby<p>I posted how I'm struggling to fold some origami models of complex polyhedra.</p><p>I have an idea which involved folding them from tracing paper.</p><p>I've folded them before, using 200gsm watercolour paper. </p><p>When that paper is coated with cyanotype before folding, you can get a metamorphogram.</p><p>Here's John Montroll's 'Gamma Star' during exposure, and as a final image. </p><p><a href="https://zirk.us/tags/origami" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>origami</span></a> <a href="https://zirk.us/tags/polyhedra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polyhedra</span></a> <a href="https://zirk.us/tags/JohnMontroll" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>JohnMontroll</span></a> <a href="https://zirk.us/tags/GammaStar" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GammaStar</span></a> <a href="https://zirk.us/tags/polyhedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polyhedron</span></a> <a href="https://zirk.us/tags/folding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>folding</span></a> <a href="https://zirk.us/tags/FoldingPaper" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FoldingPaper</span></a> <a href="https://zirk.us/tags/cyanotype" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cyanotype</span></a><br> <a href="https://zirk.us/tags/blueprint" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>blueprint</span></a> <a href="https://zirk.us/tags/metamorphogram" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>metamorphogram</span></a> <a href="https://zirk.us/tags/memory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>memory</span></a></p>
Alun Kirby<p>Pattern and chaos.</p><p>Here's the crease pattern in paper for John Montroll's Dimpled Snub Cube. </p><p>And then there's the chaotic failed collapse of it into a 3D shape.</p><p>I've folded these before, and it's an interesting fight, wrestling a sheet of paper into form.</p><p>Practice makes polyhedra.</p><p><a href="https://zirk.us/tags/origami" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>origami</span></a> <a href="https://zirk.us/tags/art" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>art</span></a> <a href="https://zirk.us/tags/artfail" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>artfail</span></a> <a href="https://zirk.us/tags/polyhedra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polyhedra</span></a> <a href="https://zirk.us/tags/polyhedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polyhedron</span></a> <a href="https://zirk.us/tags/DimpledSnubCube" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DimpledSnubCube</span></a> <a href="https://zirk.us/tags/ArtFail" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ArtFail</span></a> <a href="https://zirk.us/tags/chaos" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>chaos</span></a> <a href="https://zirk.us/tags/Pattern" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Pattern</span></a> <a href="https://zirk.us/tags/creasePattern" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>creasePattern</span></a> <a href="https://zirk.us/tags/fold" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fold</span></a> <a href="https://zirk.us/tags/folding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>folding</span></a></p>
Alun Kirby<p>Sometimes things fail.</p><p>I've been trying to get back into origami practice with John Montroll's - 'A Constellation of Origami Polyhedra' (<a href="https://johnmontroll.com/books/a-constellation-of-origami-polyhedra/" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">johnmontroll.com/books/a-const</span><span class="invisible">ellation-of-origami-polyhedra/</span></a>).</p><p>Using 75 cm squares of tracing paper made it harder - wrong paper for these models.</p><p>The crease patterns are beautiful - this is for a Sunken Cuboctohedron. But I've failed to fully fold them into 3D shape.</p><p>But it's OK. Sometimes things fail.</p><p><a href="https://zirk.us/tags/origami" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>origami</span></a> <a href="https://zirk.us/tags/polyhedra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polyhedra</span></a> <a href="https://zirk.us/tags/artfail" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>artfail</span></a> <a href="https://zirk.us/tags/fail" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fail</span></a> <a href="https://zirk.us/tags/cuboctohedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cuboctohedron</span></a> <a href="https://zirk.us/tags/polyhedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polyhedron</span></a> <a href="https://zirk.us/tags/folding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>folding</span></a> <a href="https://zirk.us/tags/FoldingPaper" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FoldingPaper</span></a></p>
Hedron App<p>No curves, only straight lines of equal length forming octahedra.</p><p><a href="https://mathstodon.xyz/tags/Hedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Hedron</span></a> <a href="https://mathstodon.xyz/tags/Polyhedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Polyhedron</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/Beads" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Beads</span></a> <a href="https://mathstodon.xyz/tags/Geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Geometry</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/Square" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Square</span></a> <a href="https://mathstodon.xyz/tags/Hexagon" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Hexagon</span></a> <a href="https://mathstodon.xyz/tags/Triangle" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Triangle</span></a> <a href="https://mathstodon.xyz/tags/perfectloop" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>perfectloop</span></a> <a href="https://mathstodon.xyz/tags/construction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>construction</span></a> <a href="https://mathstodon.xyz/tags/Math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Math</span></a> <a href="https://mathstodon.xyz/tags/Mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathematics</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>animation</span></a></p>
Hedron App<p>Cubic lattice from elongated Dodecahedra.</p><p><a href="https://mathstodon.xyz/tags/Hedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Hedron</span></a> <a href="https://mathstodon.xyz/tags/Polyhedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Polyhedron</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/crystal" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>crystal</span></a> <span class="h-card"><a href="https://mathstodon.xyz/@tomruen" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>tomruen</span></a></span> <a href="https://mathstodon.xyz/tags/perfectloop" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>perfectloop</span></a></p>
Hedron App<p>If you happen to have over 7000 regular triangles lying around, you can build this:</p><p><a href="https://mathstodon.xyz/tags/Hedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Hedron</span></a> <a href="https://mathstodon.xyz/tags/Polyhedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Polyhedron</span></a> <a href="https://mathstodon.xyz/tags/triangle" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>triangle</span></a> <a href="https://mathstodon.xyz/tags/Math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Math</span></a> <a href="https://mathstodon.xyz/tags/Geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Geometry</span></a> <a href="https://mathstodon.xyz/tags/Mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathematics</span></a> <a href="https://mathstodon.xyz/tags/perfectloop" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>perfectloop</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/Animation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Animation</span></a></p>