Isaac Mottistone<p>Truncated ‘cuboctahedron’ mapped from continuous polynomial x^80+y^80+z^80+.6133^80((y+z)^80+(z+x)^80+(x+y)^80+(y-z)^80+(z-x)^80+(x-y)^80)+.5286^80((x+y+z)^80+(x+y-z)^80+(x-y+z)^80+(-x+y+z)^80)-1=0. An Archimedean solid, it has 26 regular faces (6 octagonal, 8 hexagonal and 12 square), 48 vertices and 72 equal edges. It is not a true truncation of the cuboctahedron which instead results in 12 rectangular faces rather than square. However, with a bit of (mathematical) stretching, the requisite all edges equal condition can be met. <a href="https://mastodonapp.uk/tags/Maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Maths</span></a> <a href="https://mastodonapp.uk/tags/Mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathematics</span></a> <a href="https://mastodonapp.uk/tags/Math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Math</span></a> <a href="https://mastodonapp.uk/tags/polyhedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polyhedron</span></a></p><p><a href="https://en.wikipedia.org/wiki/Truncated_cuboctahedron" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Truncate</span><span class="invisible">d_cuboctahedron</span></a></p>